Search results for " Electrode potential"

showing 9 items of 9 documents

Rate Theory for Electrocatalytic Systems: Fixed Potential Formulation for General, Electron Transfer, and Proton-Coupled Electron Transfer Reactions

2019

Atomistic modeling of electrocatalytic reactions is most naturally conducted within the grand canonical ensemble (GCE) which enables fixed chemical potential calculations. While GCE has been widely adopted for modeling electrochemical and electrocatalytic thermodynamics, the electrochemical reaction rate theory within GCE is lacking. Molecular and condensed phase rate theories are formulated within microcanonical and canonical ensembles, respectively, but electrocatalytic systems described within the GCE require extension of the conventionally used rate theories for computation reaction rates at fixed electrode potentials. In this work, rate theories from (micro) canonical ensemble are gene…

Canonical ensembleTransition state theoryElectron transferGrand canonical ensembleMaterials scienceStandard electrode potentialElectrochemical kineticsThermodynamicsRate equationProton-coupled electron transfer
researchProduct

Unified Rate Theory of Electrochemistry and Electrocatalysis: Fixed Potential Formulation for General, Electron Transfer, and Proton-Coupled Electron…

2019

Atomistic modeling of electrocatalytic reactions is most naturally conducted within the grand canonical ensemble (GCE) which enables fixed chemical potential calculations. While GCE has been widely adopted for modeling electrochemical and electrocatalytic thermodynamics, the electrochemical reaction rate theory within GCE is lacking. Molecular and condensed phase rate theories are formulated within microcanonical and canonical ensembles, respectively, but electrocatalytic systems described within the GCE require extension of the conventionally used rate theories for computation reaction rates at fixed electrode potentials. In this work, rate theories from (micro)canonical ensemble are gener…

Canonical ensembleTransition state theoryGrand canonical ensembleElectron transferMaterials scienceStandard electrode potentialThermodynamicsRate equationProton-coupled electron transferElectrode potential
researchProduct

Solvent-Independent Electrode Potentials of Solids Undergoing Insertion Electrochemical Reactions: Part I. Theory

2012

A formally solvent-independent redox system can be theoretically defined using the Lovric and Scholz modeling of the voltammetry of microparticles for ion-insertion solids. The proposed theory is based on the extra-thermodynamic assumptions that no net charge accumulates at the solid|electrolyte interface and the assumption that the structure of the solid and the ion binding remain unaffected by the solvent. Under voltammetric conditions, the corresponding redox potential can be estimated from voltammetric and chronoamperometric data assuming electrochemical reversibility and diffusive charge transport in the solution and solid phases, also taking into account ion partition (electrolyte/sol…

ChemistryInorganic chemistryThermodynamicsElectrolyteElectrochemistryRedoxSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonSolventGeneral EnergyIon bindingStandard electrode potentialPhysics::Chemical PhysicsPhysical and Theoretical ChemistryVoltammetryThe Journal of Physical Chemistry C
researchProduct

The nanoscale structure of the Pt-water double layer under bias revealed

2019

The nanoscopic mass and charge distribution within the double layer at electrified interfaces plays a key role in electrochemical phenomena of huge technological relevance for energy production and conversion. However, in spite of its importance, the nanoscopic structure of the double layer and its response to an applied potential is still almost entirely unknown, even for Pt-water, the most fundamental electrochemical interface. Using a general ab initio methodology which advances previous models towards a dynamic and more realistic description of an electrode/electrolyte interface, we simulate for the first time the nanoscopic structure of the Pt-water double layer and its response to an …

Double layer (biology)Chemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials scienceGeneral Chemical EngineeringAbsolute electrode potentialCharge densityMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyElementary charge01 natural sciencesCapacitance0104 chemical sciencesDipoleChemical physicsPhysics - Chemical PhysicsElectrodeElectrochemistry0210 nano-technologyLayer (electronics)
researchProduct

Fundamentals of photoelectrocatalysis

2022

Photoelectrocatalysis combines heterogeneous photocatalysis and electrocatalysis principles for numerous processes including the degradation of harmful compounds, the generation of H2 and O2 from water splitting, the reduction of CO2 or the photoelectrocatalytic synthesis of valuable organic molecules otherwise difficult to be synthetized with classical approaches. The recent progress of photoelectrocatalysis is heavily related to the development of materials, especially in 2D and nano materials. Highly ordered nanomaterials such as graphene, nanotubes, nanowires, etc. are gaining more attention due to their high surface area and excellent conductivity. Other challenges are the development …

Electro kinetics Electrode Electrode potential Electron transfer Interphase Photocatalysis: Electrocatalysis Photoelectrocatalysis SemiconductorsPhotoelectrocatalysis Photocatalysis: Electrocatalysis Electrode Semiconductors Interphase Electron transfer Electro kinetics Electrode potentialSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Electrochemistry of methylene blue at an alkanethiol modified electrode

2012

International audience; Gold surfaces were derivatized with decanethiol. The electrochemistry of methylene blue at these modified electrodes was investigated in function of the gold cleaning process and compared with the results obtained at a bare gold electrode. Cyclic voltammetry at low methylene blue concentrations (c(MB) <= 16 mu M) yielded surface behavior data. The properties of the film vary with the electrode pretreatment. Without electrochemical cleaning step, the standard potential at a gold electrode modified with 1-decanethiol is nearly the same as on a bare gold electrode. On the other hand, when the electrode is electrochemically cleaned before adsorption of the alkanethiols, …

General Chemical EngineeringInorganic chemistry02 engineering and technologyPRETREATMENT010402 general chemistryElectrochemistry01 natural sciencesMODIFIED GOLD ELECTRODESchemistry.chemical_compoundAdsorptionSELF-ASSEMBLED MONOLAYERSMonolayerElectrochemistrySURFACESTHIOL MONOLAYERSSelf-assembled monolayerIMPEDANCE SPECTROSCOPYDNA021001 nanoscience & nanotechnology0104 chemical sciencesPOLYCRYSTALLINE GOLDchemistryStandard electrode potentialElectrodeCYCLIC VOLTAMMETRYCyclic voltammetry0210 nano-technologyMethylene blueREDUCTIVE DESORPTION
researchProduct

Electrocatalytic thermodynamics and kinetics at constant electrode potentials: The grand canonical ensemble approach

2020

PhysicsGrand canonical ensembleStandard electrode potentialKineticsThermodynamicsConstant (mathematics)Proceedings of the International Conference on Electrocatalysis for Energy Applications and Sustainable Chemicals
researchProduct

Solvent-Independent Electrode Potentials of Solids Undergoing Insertion Electrochemical Reactions: Part III. Experimental Data for Prussian Blue Unde…

2012

Prussian blue-modified electrodes immersed in K+-containing solutions can be used to obtain a solvent-independent redox potential system. On the basis of theoretical modeling of diffusion processes occurring under the conditions of voltammetry of immobilized particles, voltammetric and chronoamperometric data can be combined to obtain solvent-independent electrode potentials for the K+-assisted one-electron reduction of Prussian blue to Berlin white. Data for water, MeOH, EtOH, MeCN, DMS, DMF, and NM are provided.

Prussian blueChemistryDiffusionInorganic chemistryElectrochemistryRedoxSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSolventchemistry.chemical_compoundGeneral EnergyStandard electrode potentialElectrodePhysical and Theoretical ChemistryVoltammetryThe Journal of Physical Chemistry C
researchProduct

Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and elec…

2018

Properties of solid-liquid interfaces are of immense importance for electrocatalytic and electrochemical systems, but modeling such interfaces at the atomic level presents a serious challenge and approaches beyond standard methodologies are needed. An atomistic computational scheme needs to treat at least part of the system quantum mechanically to describe adsorption and reactions, while the entire system is in thermal equilibrium. The experimentally relevant macroscopic control variables are temperature, electrode potential, and the choice of the solvent and ions, and these need to be explicitly included in the computational model as well; this calls for a thermodynamic ensemble with fixed…

Work (thermodynamics)Materials scienceImplicit solvationGeneral Physics and AstronomyElectronDielectric010402 general chemistry01 natural sciencesELECTROCHEMISTRYthermodynamicsCHEMISTRY0103 physical sciencesWATERsolid-liquid interfacesStatistical physicsPhysical and Theoretical Chemistryrajapintailmiötta116QuantumAB-INITIOThermal equilibriumSELF-CONSISTENTta114010304 chemical physicstiheysfunktionaaliteoriaSIMULATIONS0104 chemical sciencesGrand canonical ensembleREDUCTIONCONTINUUMSOLVATIONSolvent modelsStandard electrode potentialtermodynamiikkakatalyysiDensity functional theoryElectronic densityAPPROXIMATIONElectrode potential
researchProduct