Search results for " Electrode potential"
showing 9 items of 9 documents
Rate Theory for Electrocatalytic Systems: Fixed Potential Formulation for General, Electron Transfer, and Proton-Coupled Electron Transfer Reactions
2019
Atomistic modeling of electrocatalytic reactions is most naturally conducted within the grand canonical ensemble (GCE) which enables fixed chemical potential calculations. While GCE has been widely adopted for modeling electrochemical and electrocatalytic thermodynamics, the electrochemical reaction rate theory within GCE is lacking. Molecular and condensed phase rate theories are formulated within microcanonical and canonical ensembles, respectively, but electrocatalytic systems described within the GCE require extension of the conventionally used rate theories for computation reaction rates at fixed electrode potentials. In this work, rate theories from (micro) canonical ensemble are gene…
Unified Rate Theory of Electrochemistry and Electrocatalysis: Fixed Potential Formulation for General, Electron Transfer, and Proton-Coupled Electron…
2019
Atomistic modeling of electrocatalytic reactions is most naturally conducted within the grand canonical ensemble (GCE) which enables fixed chemical potential calculations. While GCE has been widely adopted for modeling electrochemical and electrocatalytic thermodynamics, the electrochemical reaction rate theory within GCE is lacking. Molecular and condensed phase rate theories are formulated within microcanonical and canonical ensembles, respectively, but electrocatalytic systems described within the GCE require extension of the conventionally used rate theories for computation reaction rates at fixed electrode potentials. In this work, rate theories from (micro)canonical ensemble are gener…
Solvent-Independent Electrode Potentials of Solids Undergoing Insertion Electrochemical Reactions: Part I. Theory
2012
A formally solvent-independent redox system can be theoretically defined using the Lovric and Scholz modeling of the voltammetry of microparticles for ion-insertion solids. The proposed theory is based on the extra-thermodynamic assumptions that no net charge accumulates at the solid|electrolyte interface and the assumption that the structure of the solid and the ion binding remain unaffected by the solvent. Under voltammetric conditions, the corresponding redox potential can be estimated from voltammetric and chronoamperometric data assuming electrochemical reversibility and diffusive charge transport in the solution and solid phases, also taking into account ion partition (electrolyte/sol…
The nanoscale structure of the Pt-water double layer under bias revealed
2019
The nanoscopic mass and charge distribution within the double layer at electrified interfaces plays a key role in electrochemical phenomena of huge technological relevance for energy production and conversion. However, in spite of its importance, the nanoscopic structure of the double layer and its response to an applied potential is still almost entirely unknown, even for Pt-water, the most fundamental electrochemical interface. Using a general ab initio methodology which advances previous models towards a dynamic and more realistic description of an electrode/electrolyte interface, we simulate for the first time the nanoscopic structure of the Pt-water double layer and its response to an …
Fundamentals of photoelectrocatalysis
2022
Photoelectrocatalysis combines heterogeneous photocatalysis and electrocatalysis principles for numerous processes including the degradation of harmful compounds, the generation of H2 and O2 from water splitting, the reduction of CO2 or the photoelectrocatalytic synthesis of valuable organic molecules otherwise difficult to be synthetized with classical approaches. The recent progress of photoelectrocatalysis is heavily related to the development of materials, especially in 2D and nano materials. Highly ordered nanomaterials such as graphene, nanotubes, nanowires, etc. are gaining more attention due to their high surface area and excellent conductivity. Other challenges are the development …
Electrochemistry of methylene blue at an alkanethiol modified electrode
2012
International audience; Gold surfaces were derivatized with decanethiol. The electrochemistry of methylene blue at these modified electrodes was investigated in function of the gold cleaning process and compared with the results obtained at a bare gold electrode. Cyclic voltammetry at low methylene blue concentrations (c(MB) <= 16 mu M) yielded surface behavior data. The properties of the film vary with the electrode pretreatment. Without electrochemical cleaning step, the standard potential at a gold electrode modified with 1-decanethiol is nearly the same as on a bare gold electrode. On the other hand, when the electrode is electrochemically cleaned before adsorption of the alkanethiols, …
Electrocatalytic thermodynamics and kinetics at constant electrode potentials: The grand canonical ensemble approach
2020
Solvent-Independent Electrode Potentials of Solids Undergoing Insertion Electrochemical Reactions: Part III. Experimental Data for Prussian Blue Unde…
2012
Prussian blue-modified electrodes immersed in K+-containing solutions can be used to obtain a solvent-independent redox potential system. On the basis of theoretical modeling of diffusion processes occurring under the conditions of voltammetry of immobilized particles, voltammetric and chronoamperometric data can be combined to obtain solvent-independent electrode potentials for the K+-assisted one-electron reduction of Prussian blue to Berlin white. Data for water, MeOH, EtOH, MeCN, DMS, DMF, and NM are provided.
Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and elec…
2018
Properties of solid-liquid interfaces are of immense importance for electrocatalytic and electrochemical systems, but modeling such interfaces at the atomic level presents a serious challenge and approaches beyond standard methodologies are needed. An atomistic computational scheme needs to treat at least part of the system quantum mechanically to describe adsorption and reactions, while the entire system is in thermal equilibrium. The experimentally relevant macroscopic control variables are temperature, electrode potential, and the choice of the solvent and ions, and these need to be explicitly included in the computational model as well; this calls for a thermodynamic ensemble with fixed…